关于威尼斯网站

当前位置:威尼斯城所有登入网址 > 关于威尼斯网站 > 水环热泵系统的变水量运营及其相关主题素材,

水环热泵系统的变水量运营及其相关主题素材,

来源:http://www.17930ip.com 作者:威尼斯城所有登入网址 时间:2019-08-28 06:02

简介:京杭大运河有着千年的历史,千里的长度。沟通五水系,流经六省市,集航运、灌溉、防洪工程于一体,是古代中国南北方向唯一的内陆水上交通大动脉,工程历史悠久,内涵丰富。结合南水北调从规划京杭大运河工程地理位置因素的考虑,对历史政治、经济及军事等方面的作用以及规划思想、治理策略研讨。

本文针对湖南某宾馆采用的地下水源热泵中央空调系统的运行现状,根据其自身特点提出对该系统空调水泵进行变频控制节能改造的建议和方案,并采用当量峰值小时数法从节能性和静态回收期两方面详细论证了该改造方案的可行性。结果证明,该改造方案在保证不低于热泵机组对水量的最低要求的同时,根据负荷的变化自动调节水泵的流量,节能效果显著,静态回收期短,是切实可行的。

关键字:京杭大运河 地理位置因素

关键字:地下水源热泵 变频控制 节约能源1 引言

经济摘要:本文从理论上阐述了水环热泵系统变水量运行的经济意义,并且针对工程实际提出了水环热泵变水量系统的水泵配置及其控制方式。

集中式中央空调系统在为人们营造舒适环境的同时也带来了能耗问题,如何既满足空调舒适度,又最大限度的节约能源,已日益为人们所关注。目前空调系统设计和水泵等设备选型均是按最不利工况进行的,且留有一定的裕量。由于季节、昼夜和用户负荷的变化,实际空调热负载在绝大部分时间内远比设计负载低,空调系统多数时间是在部分负荷下运行。而运行情况是空调水泵一年四季长期在额定工况下工作,只能通过节流来降低水流量满足负荷的要求,使得水泵大部分功耗消耗在克服节流阀阻力上,浪费了水泵运行的输送能量。一般空调水泵的耗电量约占总空调系统耗电量的20-30%,故节约低负载时水系统的输送能量,对降低整个空调系统能耗具有重要的意义。

关键词:水环热泵 变水量 水泵 控制

本文针对湖南某宾馆采用的地下水源热泵系统,根据其运行现状提出对该系统的空调水泵进行闭环自动变频控制节能改造,从节能性和静态回收期等方面论证了该改造方案是切实可行的。

Abstract: in this paper, presents economic idea about VWV of water recourse heat pump in the theory. Introduces water pump arrangement about VWV system of water recourse heat pump and control about it from engineering .

2 空调系统概况

Keyword: water recourse, VWV, water pump, control

该宾馆位于长江中下游地区的湖南省西北部的澧县,作者于2003年1月至3月对该宾馆地源热泵系统的冬季运行工况进行了测试,测试结果整理如表1。由于宾馆的入住率、室外气温变化、人员活动内容等原因,该系统基本上是在设计负荷80%及以下运行,其中运行于设计负荷的60%以下的就占有63.48%。显然根据满负荷状态选取的热泵机组、水泵等设备让其在部分负荷下长期连续运行,设备大部分时间处于低效率工作状态。该系统热泵机组一大一小并联运行,制热量分别为100KW、40KW;两台的并联热水循环泵型号相同,其铭牌额定功率均为2.2KW;深井泵铭牌额定功率为7.5KW(系统图如图1所示),且所有水泵均定流量运行,始终处于工频状态下运转。当机组处于部分负荷运行时,常常通过关小管路上的阀门来调节供水量,造成了极大的能源浪费,因此我们有必要对该空调系统进行一下改进。3 改造方案的提出

目前在房地产领域水环热泵空调系统由于其具有系统效率高、投资零活、便于独立计费等特点应用相当广泛,也取得了一定地经济效益。然而该系统在使用过程中也暴露了一些问题。如在部分负荷条件下如何减少水泵的运行电耗?

热泵主机、深井泵和热水循环泵是宾馆中央空调系统的主要组成部分,耗电量大。由图2可以看出,在该空调系统中,热泵机组的功耗占整个空调系统能耗的65%,深井泵和热水循环泵分别为24%和11%,因此要节省整个空调系统的能耗,除大力减少热泵机组的能耗以外,减少空调水泵的能耗也是一个重要方面。

在房地产项目的空调系统中目前多采用分区分户独立设置水环热泵机组,使用时各区根据自身需要决定开停时间和所需的温度。冷却水系统集中设置。收费时各区各自电表分别计费,集中设置的水泵和冷却塔的电费由各家用户分摊。这样就带来了一个问题在过渡季节和只有少数用户入住的情况下如何减少水泵的电耗。关于这一点我们自然会想到让水泵采用变水量运行。但问题在于常规中央空调系统冷冻水泵的变水量的极限范围是由冷水机组蒸发器型式决定的,一般是满液式蒸发器不小于额定水量的70%,干式蒸发器和溴化锂机组蒸发器不小于额定水量的50%。但对于水环热泵系统而言其部分负荷有可能达到10%甚至以下,如何在这样小的负荷下保持水系统的经济运行呢?水系统在设计中又要采取哪些措施呢?

该系统的地源热泵机组本身即具有能量自动调节功能,可以在不改变制热工况的前提下,改变压缩机的输气量进而改变供液量来调节冷凝器的产热量。同时,这又为水系统的变流量运行提供了基本条件。

第一:各台水环热泵机组的冷却水进品均设置二通阀,其开关与机组联动,机组开其开,机组关其也关闭。

对于空调水泵而言,由于水泵处于定流量运行,在部分负荷状态下常常只能通过调节管路上的水阀开度来改变水流量;同时因电机转速不可调,电机只能工作在开和停两种状态,即使当热负荷很小时,也必须至少开一台,电机轴上的输出功率远大于实际负荷的需要,从而造成不必要的能源浪费。根据水泵的相似律,水泵的流量、扬程、功率具有如下关系:

第二:机组侧水泵的开停与二通阀联动,系统中只要有一只二通阀处于开启状态机组侧水泵就投入运行.

式中Q, H, N, n分别为水泵的流量、扬程、轴功率和转速。

第三:机组侧水泵根据供回压差进行变频控制.

从式可以看出水泵的扬程与水泵流量的平方成正比,轴功率与流量的立方成正比,而流量又与转速成正比。由此可见当电机的转速稍有下降,电机的耗电量就会大幅度下降,节能效果显著。水泵的变频调速装置就是通过调节水泵的转速以使水泵流量随负荷变化而变化,达到节能目的。

第四:水泵在系统设计过程中应考虑负荷特点合理搭配大小.

4 水泵变频调速工作原理及其控制方案

第五:冷却塔侧水泵根据系统回水温度决定开停.(32℃以上或16℃以下)

4.1 水泵变频调速原理

上述方案在执行过程中主要要解决两个问题。第一是根据负荷特点如何合理配置机组侧水泵。第二是系统采用何种控制方式.针对这两点我们分别给与阐述.

水泵功率、流速、流量、扬程之间具有式所示关系,又由于交流异步电动机的转速与电源频率之间的关系为:

1 机组侧水泵配置

式中n,f,S,P分别为电机的转速,供电电源频率,转差率,电机极对数。

采用水泵变速运行的变水量系统在选择水泵时应注意两点,

由式可知,当转差率变化不大时转速正比于电源频率,只要能平滑调节电源频率,就能平滑调节电机转速。水泵变频调速就是通过改变电源频率来调节水泵转速的一种方法。采用变频技术结合合理的自控方案,对水泵进行变流量调节,不仅避免了采用阀门调节造成的浪费,而且还极大的提高控制和调节精度。同时采用变频调速对电机实现软启动,无冲击杂声,还可以延长电机的使用寿命。

第一,要防止变速后水泵的振动频率与隔振装置的固有频率相同形成共振。

4.2 深井泵变频调速控制方案

第二,要防止水系统由于二通阀的关闭造成其管路特性曲线的变化,从而使水泵的工作点进入喘振区。(关于这一点可在水泵选型时由生产厂家来进行校核)

对于深井泵来说,由于深井水温度常年保持不变,维持在18.5℃左右,我们以深井水回水温度为控制参数即可控制井水的进出口温差。如图3所示,现采用温度传感器、变频器、PID回路调节器组成闭环控制系统,按照5~7℃的温差指标,深井水回水温度控制在T℃(例如冬季12℃,夏季25℃),使深井水泵的转速相应于热负载的变化而变化。以冬季为例,当负荷增加时,深井水回水温度降低,温度传感器将温度信号(4~20mA)反馈至PID回路调节器中,PID调节器根据温度设定值和温度反馈值的偏差进行PID运算,然后输入给变频器一个提高电机运转频率的信号,加大水泵转速和流量,直到温度与设定值一致;反之负荷降低时,减小频率,降低水泵转速和流量。当水泵运行频率降到控制仪表设定的低限值时,变频器停止频率的继续降低,以满足主机对流量的要求,对主机起到保护作用。

下面我们通过一个个工程实例来说明变水量系统的水泵选型。某房地产工程采用水环热泵空调系统,其冷却水总量为600t/h,该系统最小负荷有可能达到设计负荷的5%.,正常情况下配置三台水泵,每台流量为200 t/h.假设水泵的额定转速均为1450r/min.当部分负荷为5%时,如果循环水量随之降低,那么水泵此时的转速将要达到218 r/min(定压系统水泵流量与转速成一次方关系)。那么这时会发生什么情况呢?

4.3 热水循环泵变频调速控制方案

我们知道一台转速为1450 r/min水泵的振动频率约为24HZ,当水泵转速减为218 r/min时水泵的振动频率约为3.6HZ.而一般的减震器的固有频率约在3~6HZ.这样水泵在减速过程中就会发生共振。因此为了防止共振(同时也为了控制水泵振动的传递率),对与一般民用建筑而言水泵振动频率与减震器固有频率之比应在2.5以上。本例中假定减震器固有频率为6HZ,那么水泵的振动频率应在15HZ以上,水泵的转速最低应不小于900 r/min(此时水泵流量约为120 t/h)。这个转速正好对应系统处于20%的部分负荷下。因此为了保证系统处于更低负荷时水泵也能经济运行,我们在水系统设计中另外配置了一台小水泵。

由于该热水循环系统由两台型号相同的水泵并联运行,为了实现两台水泵电机转速连续可调,使得水泵电机转速根据实际热负载的大小而设定,进而节约能源;同时也为了节省变频器等设备的初投资,作者拟采用一定一变形式,即只有一台水泵配备变频器作调速运行,另一台仍为定速运行。控制系统主要由内置PID的变频器、PLC可编程控制器、压差变送器、主接触器等构成,如图4所示,变频器和PLC控制器作为系统控制的核心部件,以末端最不利环路压差为反馈信号,时刻跟踪着该信号与设定值(可取0.1Mpa)的偏差变化情况,经过变频器内置的PID调节器运算,利用PLC控制器实现水泵变频与工频的切换,自动控制水泵投入台数和电机的转速,实现闭环控制,自动调整恒压差变量供水。

小水泵配置依据是当一台大水泵运行至其最低转速时,如果系统负荷仍进一步下降,那么大水泵停机,开启小水泵。也就是小水泵的最大流量为一台大水泵的调速后的最小流量。

当系统负荷较小时,只需一台电机工作在低于工频状态下即可满足要求时,PLC利用变频器软启动一台水泵,根据压差变送器反馈来的信号(0~10V)自动调节运行频率。当热负荷增大时,变频器输出频率接近工频而管网压差仍达不到设定值,为了保证系统不频繁切换水泵,延时一段时间,若压差仍低于设定值时,则PLC将当前工作的变频泵切换至工频50HZ状态下运行,关断变频器,再由变频器从0HZ软启动下一台水泵,并根据偏差变化情况及时利用变频器调整到对应流量需要的频率,实现一台变频一台工频双泵供水。反之,当负荷降低时,变频器工作在基本频率时,如果出口流量仍然很大,供水压差高于设定值,同样延时一段时间后,若压差仍然很高,此时再由PLC关掉工频控制方式的水泵,只由剩下的单泵变频供水。无论系统是单泵变频运行还是双泵一定一变运行,均能实现末端恒压差供水。切换示意图如图5所示。

本例中小水泵的流量应为120 t/h(其额定转速仍为1450 r/min)。当其转速为900 r/min时,流量约为75 t/h,这个流量约对应12.5%的部分负荷。这样的水泵配置基本上可满足水系统的经济运行。如果还需随负荷下降进一步降低水流量,那还可配一台更小流量的水泵。其原则同。本例中这台水泵的额定流量为75 t/h(额定转速为1450 r/min),当其转速降为900 r/min时,水泵流量降为45 t/h,基本对应系统7.5%的部分负荷。这种配置方式可进一步降低水泵在低负荷时的电耗。

5 水泵变频节能计算

2 变水量系统控制方式

5.1 变频节能计算方法

变水量系统采用DDC控制方式,这种控制方式的优点是整个系统系统可靠、节能。产品价格日趋低廉、安装费用低、节省空间。使用方便、升级容易、安全性强。有技术支持。可以实现水泵软启动,使启动过程对电网影响小。

本文参照文献、的算法,采用当量峰值小时数法计算空调运行期间的能耗,夏季当量小时数τ夏,冬季当量小时数τ冬,空调系统全年运行小时数t。设水泵的铭牌额定功率为N,在未采用变频技术的情况下,空调水泵的全年耗电量Q1为:

整个控制系统是在每个楼层或一定的空调区域设置一台现场控制器,当有一台水环热泵机组投入使用后与其对应的二通阀即打开(机组与二通阀间的控制由机组自身配套控制器实现)。二通阀开户信号传至现场控制器,再由现场控制器将信号传至整个楼宇的中央集中控制器,最后由中央集中控制器将信号传至水泵,控制水泵启动。当系统中所有水环热泵机组均停止工作时,所有二通阀均关闭,此时没有信号传至现场控制器,中央集中控制器也无信号输入,这时其即控制水泵关闭。

Q1=N-t ,KWh

中央集中控制器将信号传至水泵后,水泵启动。根据上面的例子75 t/h流量的小水泵先启动。该水泵启动后其转速由机组侧的供回水压差控制,随着系统中投入运行的机组增多,呈开启状态的二通阀也随之增多,系统供回水压差逐渐减小,水泵的转速逐渐提高。当小水泵的转速达到其额定转速后供回水压差如果再减小,这台小水泵停止运行,流量为

而采用变频调速后全年用电量Q2为:

120 t/h的水泵接着投入运行,如果系统中呈开启状态的二通阀继续增多,系统供回水压差继续减小,水泵的转速继续提高,当水泵达到其额定转速时,如果供回水压差再下降那么这台水泵停止运行,一台200 t/h流量的水泵开始投入。这台水泵的转速仍由供回水压差控制逐渐提高,当达到其额定转速后,如果供回水压差再下降,第二台200 t/h流量的水泵投入运行。这时第一台200 t/h流量的水泵减速,这两台水泵同时受供回水压差控制保持同步转速。当这两台水泵均达到额定转速后,如果压差继续下降那么第三台200 t/h流量的水泵继续投入运行。此时原来达到额定转速的两台水泵减速,三台水泵同受供回水压差控制保持同步转速,直至系统达到满负荷状态三台水泵均达到额定转速。

Q2=N-(τ夏 τ冬),KWh

对于冷却塔侧水泵其开停受机组侧水泵的回水温度控制,采用定水量运行模式。回水温度超过32℃时水泵开启,冷却塔投入运行。当回水温度低于16℃时水泵开启,锅炉投入运行。

则全年可节省的电量为

3 变水量运行经济性分析

ΔQ=Q1-Q2=N-t-N-(τ夏 τ冬),KWh

机组侧水泵采用变水量运行模式后其节能效果究竟如何?我们仍根据前面的工程实例做一分析。

静态投资回收期 n=,年

该房地产项目为一综合工程,其内包括办公、商场、住宅等部分。其全年空调运行时间为250天。整个楼宇全年空调负荷分布见表一:

式中 M0 - 分别为采用变频技术增加的初投资,元

表一 楼宇全年空调负荷分布表

M1 - 每年节省的运行费用(主要是能源费用),元

负荷率% 5 10 20 30 40 50
时间频数h 300 400 400 500 750 800
负荷率% 60 70 80 90 100
时间频数h 1000 800 700 300 50

湖南省商业用电电价为0.98元/度。宾馆全年以冬、夏两季6个月运行计算,每天平均运行18个小时(6:00-24:00),文献的当量湿球温度小时数的数据公式是针对上海地区得出,由于湖南省和上海气候条件相差不大,因此本文也近似采用此公式

几种型号水泵的额定功率分别为:流量200 t/h水泵,额定功率为22kw.流量120 t/h水泵,额定功率为11kw.流量75 t/h水泵,额定功率为7.5kw.根据定压系统水泵流量与输入功率呈一次方关系,我们可以计算出变水量系统的水泵在不同空调负荷率下的输入功率。见表二。

τ夏=3097.32-102.16tns τ冬=567.37 36.43 tns

表二 空调系统部分负荷条件下的水泵输入功率

tns- 室内设计湿球温度值 这里夏季取tns =20.3℃;冬季取tns =12.3℃。

负荷率% 5 10 20 30 40 50
输入功kw 4.5 6 11 19.8 27.2 33
耗电kwh 1350 2400 4400 9900 20400 26400
负荷率% 60 70 80 90 100
输入功kw 39.6 46.2 52.8 59.4 66
耗电kwh 39600 36960 36960 17820 3300 累199490

代入式得:τ夏=1023.4h,τ冬=1015.5h

如果本工程水泵不配置另外两台小水泵,仅对三台大水泵进行转速控制。那么在部分负荷条件下全年水泵电耗将会怎样呢?见表三。 表三 空调系统部分负荷条件下的水泵输入功率

5.2 深井泵节能效果分析

负荷率% 5 10 20 30 40 50
输入功kw 13.6 13.6 13.6 19.8 27.2 33
耗电kwh 4080 5440 5440 9900 20400 26400
负荷率% 60 70 80 90 100
输入功kw 39.6 46.2 52.8 59.4 66
耗电kwh 39600 36960 36960 17820 3300 累206300

深井泵铭牌额定功率N=7.5KW,一台,拟选富士FRN7.5G11S-4CX变频器一台,市场报价6410元,加上其它外围设备共计总投资为M0=7000元。将其数据代入上式、中得:

表四为空调水系统不采用变水量方案,机组侧三台大水泵采用定水量运行时全年水泵电耗。此类系统目前在水环热泵系统中很常见,每台水环热泵机组进水口处均不设二通阀,系统中有少量机组投入运行三台大水泵就必须同时全部投入运行。 表四 空调系统部分负荷条件下的水泵输入功率

ΔQ=Q1-Q2=7.5*6*30*18-7.5(1023.4 1015.5)=9008.25KWh

负荷率% 5 10 20 30 40 50
输入功kw 66 66 66 66 66 66
耗电kwh 19800 26400 26400 33000 49500 52800
负荷率% 60 70 80 90 100
输入功kw 66 66 66 66 66

折合成人民币每年可节约电费M1=9008.25*0.98=8828元,节能效果显著。

从上面的比较我们可以看出变水量方案1与定水量相比年节电达49.6%,变水量方案2与定水量方案相比年节电达47.9%.由此我们可以得出在水环热泵空调系统中水泵采用变水量运行方案的经济意义。另外变水量方案1与变水量方案2之间的节电效果并不明显,这主要是因为在本例中空调系统低负荷运行时间不长。通过本例也可让我们得出这样的经验,在空调系统低负荷运行时间不长的情况下,在变水量系统水泵配置中可直接配置二至三台大流量水泵,而不需另外配置小流量水泵。这样可使水系统的控制更为简化。只有在空调系统低负荷运行时间较长时,从进一步节能的角度出发需要另外配置一至二台小流量水泵。 参考文献 1. 姚国梁。 空调变频水泵节能探讨。 暖通空调, 2004,6: 32~34 2. 张维佳,潘达林编著。 工程流体力学。 北京。 中国建筑工业出版社, 2001 3. 陆耀庆主编。 实用供热空调设计手册。 北京。 中国建筑工业出版社, 1993 4. 顾兴蓥主编。 民用建筑暖通空调设计技术措施。 第二版。 北京。 中国建筑工业出版社, 1996

静态投资回收期n===0.79年,9个半月即可回收初投资。

5.3 热水循环泵节能效果分析

热水循环泵铭牌额定功率N=2.2KW,两台,拟选富士FRN2.2G11S-4CX变频器一台,市场报价3920元,三菱FX2N-16MR-001 PLC可编程控制器一台,市场报价3080元,加上其它外围设备共计总投资为M0′=8000元。将其数据代入上式、中得:

ΔQ′==2.2*2*30*6*18-2.2*2(1023.4 1015.5)=5284.4KWh

折合成人民币每年可节约电费M1′=5284.4*0.98=5179元,节能效果显著。

静态投资回收期n′===1.5年,一年半即可回收初投资。

综上所述,根据地下水源热泵中央空调系统的运行特点,提出采用变频控制装置对系统进行改造,在保证不低于热泵机组对水量的最低要求,自动调节水泵流量以满足负荷的变化,节能效果显著,静态回收期短,具有一定的可行性。

龙有新. 第十二届全国暖通空调技术信息网大会文集. 北京:中国建材工业出版社. 2003. 185~189

韩焱青. 武汉化工学院学报,2000,22:70~73

张戟 龚固丰.计算机与自动化,1999,18:18~19

钱锋 郑中磊. 建筑热能通风空调,2002,21:51~52

陈沛霖 岳孝方. 空调与制冷技术手册. 上海:同济大学出版社,1991

本文由威尼斯城所有登入网址发布于关于威尼斯网站,转载请注明出处:水环热泵系统的变水量运营及其相关主题素材,

关键词: